

Modeling and Simulation: The Good, the Bad, and the Hopeful

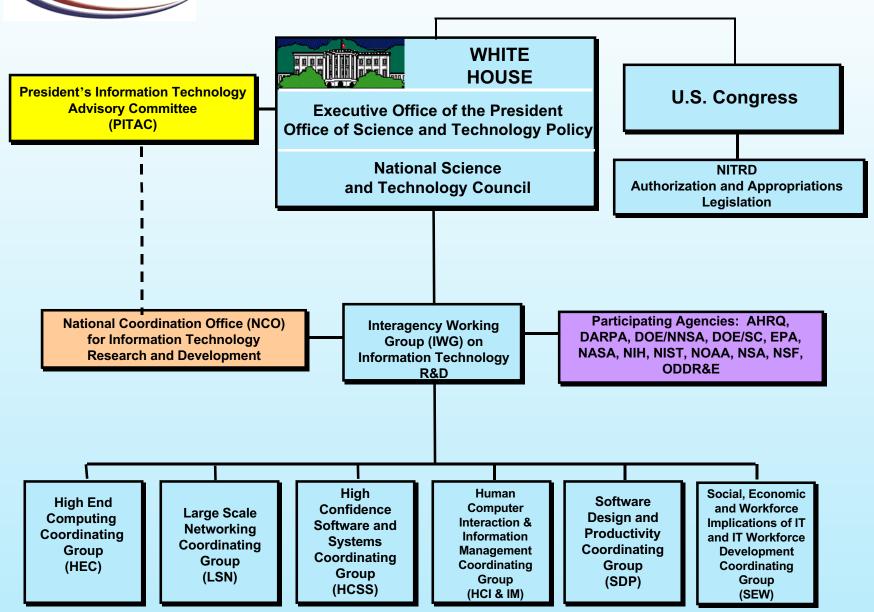
David B. Nelson, Ph.D.

Director

National Coordination Office for Information Technology Research and Development

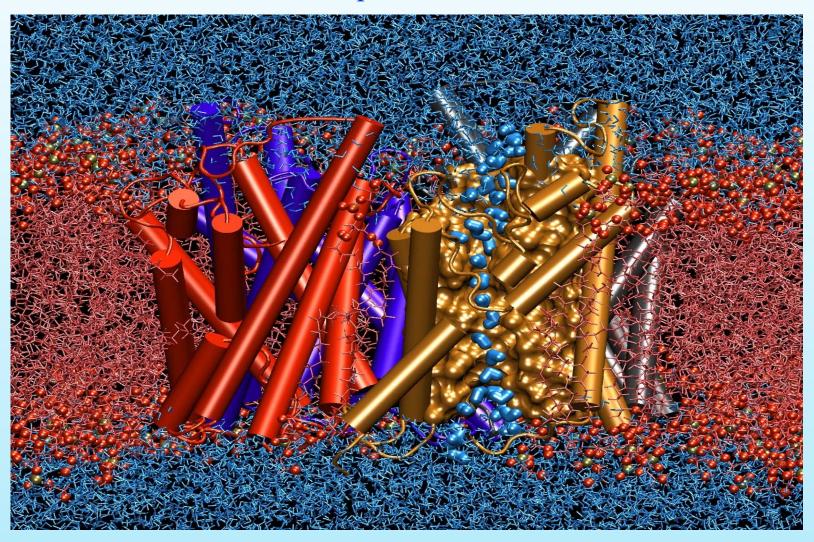
DOE Computational Science Graduate Fellowship Conference

July 15, 2003

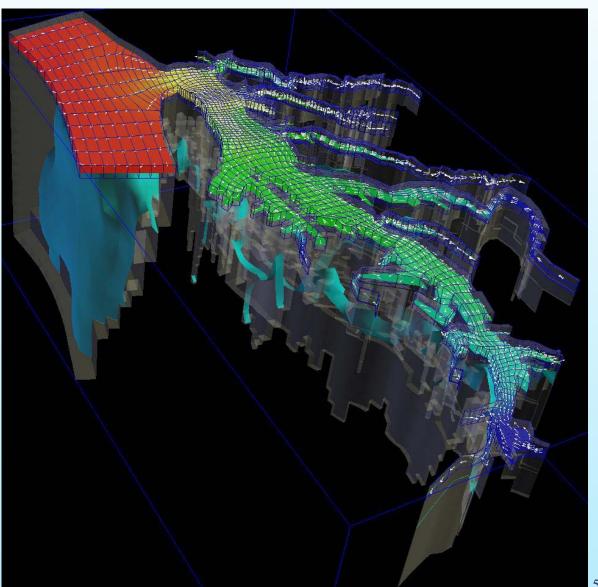

National Coordination Office (NCO) for Information Technology Research and Development (IT R&D)

Mission: To formulate and promote Federal information technology research and development to meet national goals.

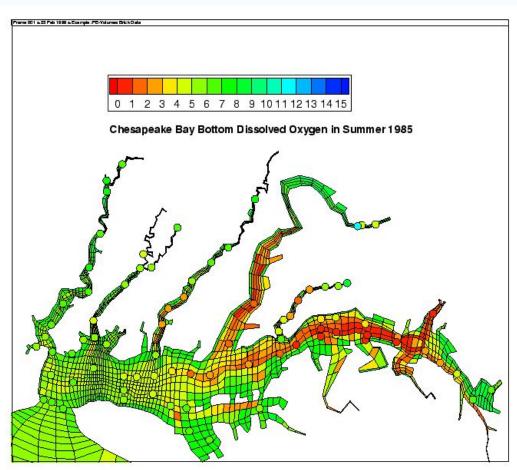
- NCO Director reports to the Director of the White House Office of Science Technology Policy (OSTP) and co-chairs the Interagency Working Group for IT R&D
- Coordinates planning, budget, and assessment activities for the Federal multi-agency Networking and Information Technology R&D (NITRD) Program
- Supports six technical Coordinating Groups (CGs) that report to the Interagency Working Group


NITRD Program Coordination

Simulation of Aquaporin Protein Inside a Cell (NSF, NIH, PSC Alpha Cluster)

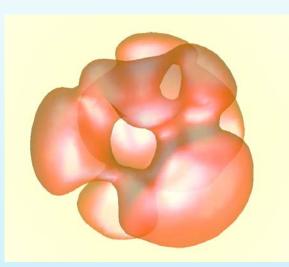

Visualization shows transport of water molecules into cell.

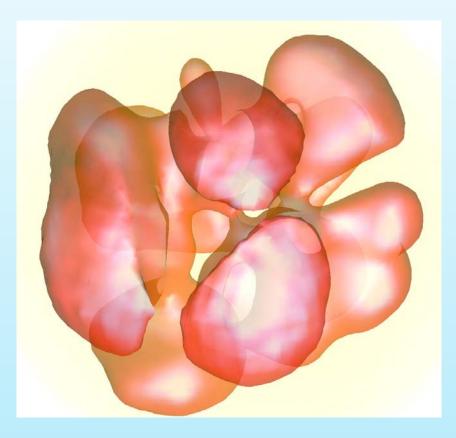
Environmental Modeling of the Chesapeake Bay (NOAA, EPA, DoD)


- **Image shows** visualization of computed salinity in the Bay (red is high salinity.)
- South is up.
- Visualization is an important part of the model, because users may not be skilled computational scientists.

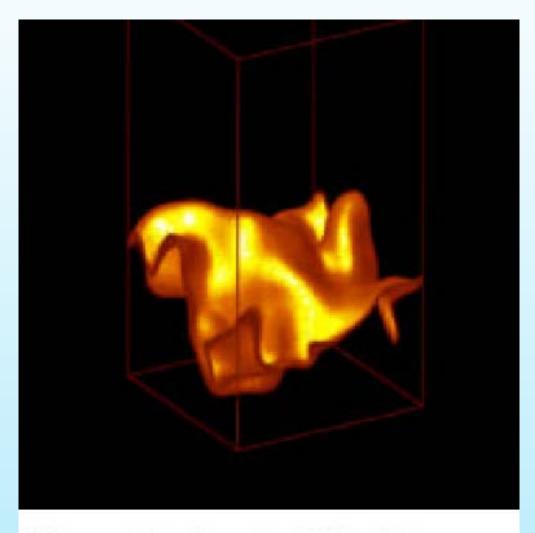
Environmental Modeling of the Chesapeake Bay (NOAA, EPA, DoD)

- Model is checked against measured data
- Model has shown that approximately 1/4 of the nitrogen added to the Bay starts as air pollution, some from sources hundreds of miles from the Bay's watershed.
- Model also shows that substantial nitrogen comes from ground water on the Eastern shore



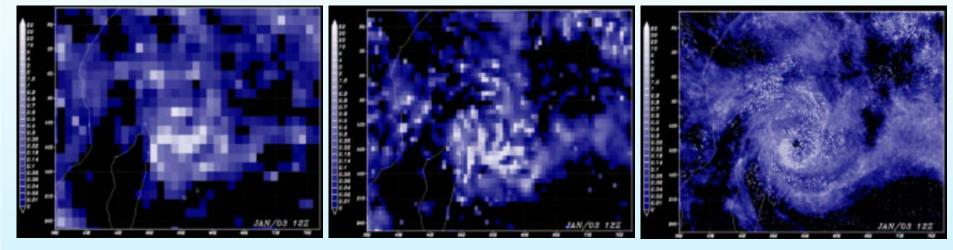

Explosion of a Super-Nova (not to scale) (DOE)

Start



Middle

Simulation of Turbulent Flame with Comprehensive Chemistry (DOE)

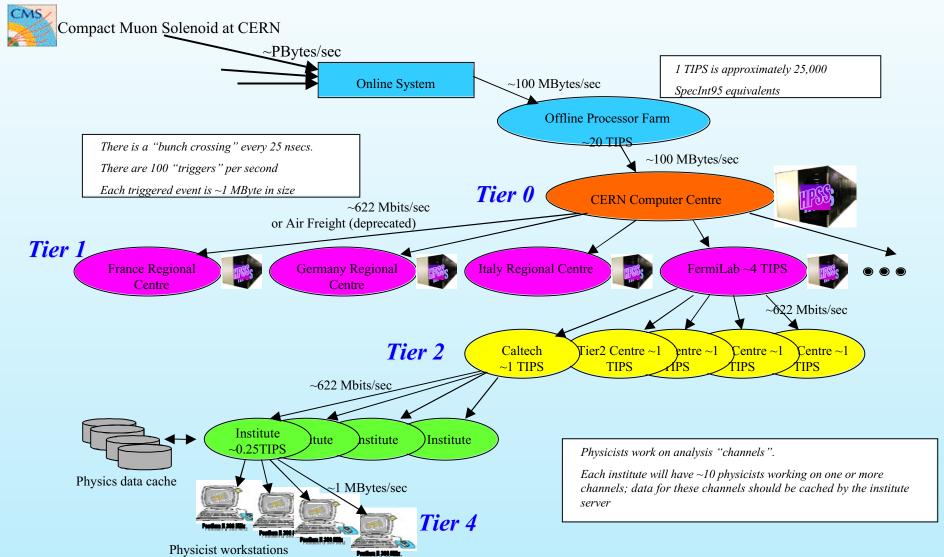


Flame surface from simulation of a turbulent premixed methane flame

Power of Japanese Earth Simulator Allows Better Resolution of Local Features

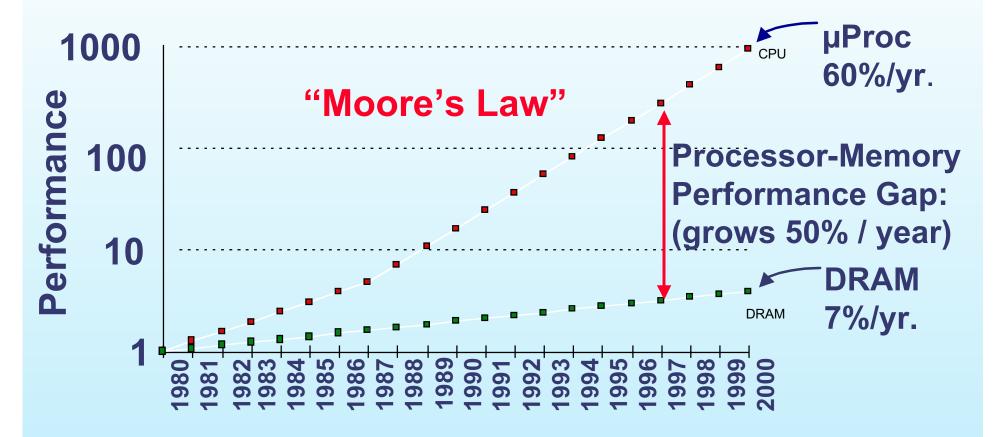
Simulation of Tropical Cyclone Near Madagascar

125.1 km grid


62.5 km grid

10.4 km grid

(U.S. 1200 year control run used approximately 280 km grid.)



Grid Communications & Applications: High End Physics Problem

Processor-Memory Performance Gap

- •Alpha 21264 full cache miss / instructions executed: 180 ns/1.7 ns =108 clks x 4 or 432 instructions
- Caches in Pentium Pro: 64% area, 88% transistors
 *Taken from Patterson-Keeton Talk to SigMod

Processing vs. Memory Access

• Doesn't cache solve this problem?

It depends. With small amounts of contiguous data, usually. With large amounts of non-contiguous data, usually not.

In most computers the programmer has no control over cache.

Often "a few" Bytes/FLOP is considered OK.

• However, consider operations on the transpose of a matrix (e.g., for adjunct problems)

$$Xa = b$$
 $X^{T}a = b$

If *X* is big enough, 100% cache misses are guaranteed, and we need at least 8 Bytes/FLOP (assuming a and b can be held in cache).

• Latency and limited bandwidth of processor-memory and node-node communications are major limiters of performance for scientific computation

Testing Processing vs. Memory Access with Benchmarks

• Simple benchmark: Stream Triad

$$a_i + s \times b_i = c_i$$

 a_i , b_i , and c_i are vectors; s is a scalar. Vector length is chosen to be much longer than cache size.

Each execution includes 2 memory loads + 1 memory store and 2 FLOPs, or 12 Bytes/FLOP (assuming 8 Byte precision)

No computer has enough memory bandwidth to reference 12 Bytes for each FLOP!

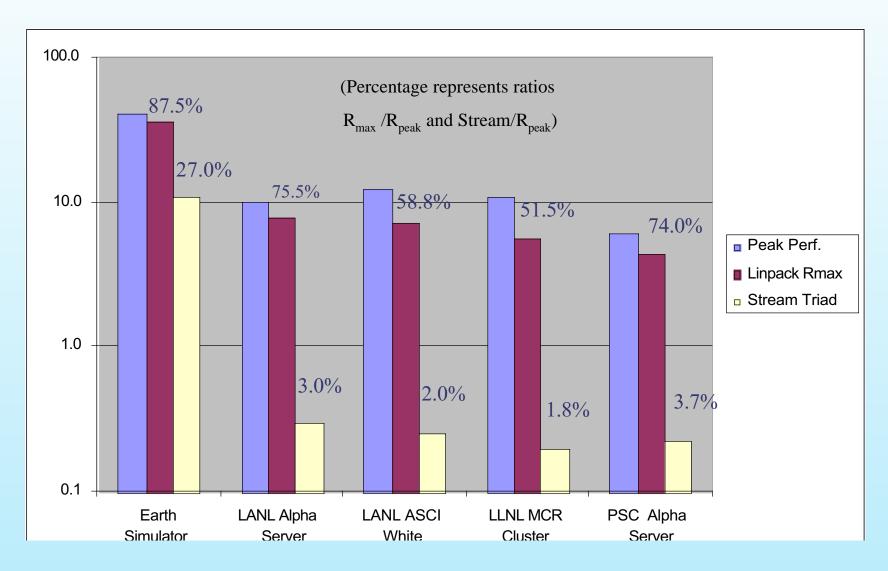
Testing Processing vs. Memory Access with Benchmarks

• Another Benchmark: Linpack

$$A_{ij} x_j = b_i$$

Solve this linear equation for the vector x, where A is a known matrix, and b is a known vector. Linpack uses the BLAS routines, which divide A into blocks.

On the average Linpack requires 1 memory reference for every 2 FLOPs, or 4Bytes/Flop. Many of these can be cache references.



Selected System Characteristics

		Earth Simulator	ASCI Q	ASCI White	MCR	Cray X1	
		(NEC)	(HP ES45)	(IBM SP3)	(Dual Xeon)	(Cray)	
Year of Introduction		2002	2003	2000	2002		2003
Node Architecture		Vector	Alpha micro	Power 3 micro	Xeon micro	Vector	
		SMP	SMP	SMP	SMP	SMP	
System Topology		NEC single-stage	Quadrics QsNet	IBM	Quadrics QsNet	2D Torus	
		Crossbar	Fat-tree	Omega network	Fat-tree	Interconnect	
Number of Nodes		640	3072 (Total)	512	1152		
Processors	- per node	8	4	16	2		4
	- system total	5120	12288	8192	2304		
Processor Speed		500 MHz	1.25 GHz	375 MHz	2.4 GHz	800 MHz	
Peak Speed	- per processor	8 Gflops	2.5 Gflops	1.5 Gflops	4.8 Gflops	12.8 Gflops	
	- per node	64 Gflops	10 Gflops	24 Gflops	9.6 Gflops	51.2 Gflops	
	- system total	40 Gflops	30 Gflops	12 Tflops	10.8 Tflops	_	
Memory	- per node	16 GB	16 GB	16 GB	16 GB	8-64 GB	
•	- per processor	2 GB	4 GB	1 GB	2 GB	2-16 GB	
	- system total	10.24 TB	48 TB	8 TB	4.6 TB		
Memory Bandwidth (peak)							
	- L1 Cache	N/A	20 GB/s	5 GB/s	20 GB/s	76.8 GB/s	
	- L2 Cache	N/A	13 GB/s	2 GB/s	1.5 GB/s		
	Main (per processor)	32 GB/s	2 GB/s	1 GB/s	2 GB/s	34.1 GB/s	
Inter-node MPI							
	- Latency	8.6 μsec	5 μsec	18 μsec	4.75 μsec		
	- Bandwidth	11.8 GB/s	300 MB/s	500 MB/s	315 MB/s	12.8 GB/s	
Bytes/flop to main memory		4	0.8	0.67	0.4		2.66
Bytes/flop interconnect		1.5	0.12	0.33	0.07		1

Performance Measures of Selected Top Computers

Major Problem: Poor Links Between Workload and Architecture Design

- Build It and They Will Come
- Weakness of Government High Performance Computing and Communication Program in 1990s
 - No link between grants for computer architecture research and grants for computer acquisition
 - Poor feedback from users to developers
 - Poor connections between computational scientists and computer scientists (one workshop in Pittsburgh in 1993)
- Result: Selection of computer architecture is not well grounded on application needs

What About Synthetic Benchmarks?

- Peak performance nuf said
- Linpack –only measures performance of cache-friendly code
- Stream only measures contiguous communications with memory, but good measure of bandwidth
- GUPS really tough benchmark because it makes random memory access; may exceed requirements of most codes
- IDC balanced benchmarks good compilation, but somewhat artificially combined
- Effective System Performance Benchmark promising, but not widely used
- NAS Parallel Benchmarks disused, but may be coming back
- Livermore Loops obsolete
- Your own workload ??

Resurgence of Performance Analysis Is Promising

- LANL Performance and Architecture Lab: http://www.c3.lanl.gov/par_arch/
- Performance Evaluation Research Center: http://perc.nersc.gov/
- IDC User Forum: http://64.122.81.35/benchmark/
- Performance Modeling and Characterization: http://www.sdsc.edu/PMaC/Benchmark/
- NAS Parallel Benchmarks: http://www.nas.nasa.gov/Software/NPB/
- Recent High End Computing Workshop offered recommendations for performance evaluation: http://www.cra.orgActivities/workshops/nitrd/
- Great opportunity for agencies to cooperate on performance evaluation.

Summary

- Computational Science is now a third pillar of research, along with experiment and theory.
- High-end computers are getting harder to use and more inefficient.
- Federal agencies are recognizing this and working to improve things.

For Further Information

Please contact us at:

nco@itrd.gov

Or visit us on the Web:

www.itrd.gov